Constant-Optic-Flow Lunar Landing: Optimality and Guidance

نویسندگان

  • Dario Izzo
  • Nicolás Weiss
  • Tobias Seidl
چکیده

Neuromorphic architectures to robust and adaptive navigation based on visual clues have been proposed as automated landing systems. In particular, constant-optic-flow descents have been studied in relation to their bioinspired nature and to their promise for a substantial hardware and software simplification. The main body of work on the topic considers Earth-based systems as applications, such as micro air vehicles, and has only lately looked at planetary landings, but never in relation to their mass optimality. In this paper, constant-optic-flow descents are studied with respect to optimality, first from a theoretical point of view using Pontryagin’s maximum principle and then performing a numerical investigation on some selected cases (Apollo-like) and a comparison with unconstrained descents. The propellant mass introduced by forcing a constant optic flow during a lunar descent is estimated for typical high-gate/low-gate conditions. The effect of constraining the spacecraft pitch law during the constant-optic-flow descent is also studied, showing that an optimal pitch law is essential to lower the overall mass consumption and that linear or exponential laws may not be adequate. A guidance algorithm is then presented and discussed for use in automated planetary landing when a constant optic flow is regulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Landing with time-to-contact and ventral optic flow estimates

Many recent studies on autonomous spacecraft landing use computer vision methods to improve the accuracy of the state estimates used for landing. Typically, these studies integrate the vision module with other exteroceptive sensors such as laser or radar altimeters. This is a sensible approach for the main landing system of a large spacecraft. However, for a backup emergency system or for much ...

متن کامل

Design of Guidance Laws for Lunar Pinpoint Soft Landing

Future lunar missions ask for the capability to perform precise Guidance, Navigation and Control (GNC) to the selected landing sites on the lunar surface. This paper studies the guidance issues for the lunar pinpoint soft landing problem. The primary contribution of this paper is the design of descent guidance law based on the Pontryagin maximum principle. The simulation shows that the proposed...

متن کامل

Toward an Autonomous Lunar Landing Based on Low-speed Optic Flow Sensors

For the last few decades, growing interest has returned to the quite challenging task of the autonomous lunar landing. Soft landing of payloads on the lunar surface requires the development of new means of ensuring safe descent with strong final conditions and aerospace-related constraints in terms of mass, cost and computational resources. In this paper, a two-phase approach is presented: firs...

متن کامل

A universal strategy for visually guided landing.

Landing is a challenging aspect of flight because, to land safely, speed must be decreased to a value close to zero at touchdown. The mechanisms by which animals achieve this remain unclear. When landing on horizontal surfaces, honey bees control their speed by holding constant the rate of front-to-back image motion (optic flow) generated by the surface as they reduce altitude. As inclination i...

متن کامل

Minimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex Optimization

To increase the science return of future missions toMars and to enable sample return missions, the accuracy with which a lander can be delivered to the Martian surface must be improved by orders of magnitude. The prior work developed a convex-optimization-based minimum-fuel powered-descent guidance algorithm. In this paper, this convex-optimization-based approach is extended to handle the casew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011